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SDU: A Semidefinite Programming-Based
Underestimation Method for Stochastic Global

Optimization in Protein Docking
Ioannis Ch. Paschalidis, Yang Shen, Pirooz Vakili, and Sandor Vajda

Abstract—This paper introduces a new stochastic global opti-
mization method targeting protein-protein docking problems, an
important class of problems in computational structural biology.
The method is based on finding general convex quadratic underes-
timators to the binding energy function that is funnel-like. Finding
the optimum underestimator requires solving a semidefinite pro-
gramming problem, hence the name semidefinite programming-
based underestimation (SDU). The underestimator is used to bias
sampling in the search region. It is established that under appro-
priate conditions SDU locates the global energy minimum with
probability approaching one as the sample size grows. A detailed
comparison of SDU with a related method of convex global un-
derestimator (CGU), and computational results for protein-protein
docking problems are provided.

Index Terms—Linear matrix inequalities (LMIs), optimization,
protein-protein docking, semidefinite programming, structural bi-
ology.

I. INTRODUCTION

THIS work is motivated by a fundamental and challenging
problem in computational structural biology. Proteins in-

teract with each other and with other chemical entities in the cell
to form complexes consisting of two (or more) macromolecules.
Protein-protein interactions play a central role in metabolic con-
trol, signal transduction, and gene regulation. Proteins also in-
teract with a large number of small molecules that serve as sub-
strates, inhibitors, or cofactors in metabolic reactions, as well as
with external compounds acting as drugs in modulating biolog-
ical behavior. Determining the three-dimensional (3-D) structure
of a complex from the atomic coordinates of two or more inter-
acting molecules is known as the molecular docking problem.
Experimental techniques -x-ray crystallography or nuclear mag-
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netic resonance (NMR)– can provide such 3-D structures but
are time-consuming, expensive, and not universally applicable as
many molecular complexes are short-lived and exist only under
well defined cellular conditions. As a result, solving these prob-
lemscomputationally iscriticalandhasattracteda lotofattention.

Docking two proteins can be seen as a control problem as one
has to control one of them as it approaches and docks with the
other; this has parallels with problems arising in robot arm ma-
nipulation [1], [2]. From a static point of view, thermodynamic
principles imply that proteins bind in a way that minimizes the
Gibbs free energy of the complex. These energy functions have
multiple deep funnels and a huge number of local minima of less
depth that are spread over the domain of the function (see Fig. 1).
This “complexity” of the energy landscape is perhaps best ar-
ticulated in the Levinthal paradox [3]: The probability that na-
ture could find the native 3-D structures (or “conformations”)
by random search seems uncomfortably close to zero. More re-
cently though, it was recognized that the funnel-like shape of
the energy function may explain why proteins bind with other
molecules very fast and in so doing they may follow multiple
pathways on the energy surface (see [4]). In this paper, we intro-
duce a new optimization method for solving docking problems.
It is exactly this funnel-like shape of the energy function we set
out to exploit.

In general, the energy functions include forces that act in dif-
ferent space-scales, resulting in multi-frequency behavior, and
leading to a huge number of local minima caused by high-fre-
quency terms. Even though some global optimization methods
(see [5]) have been useful in the related problem of protein
folding, it appears that only simulated annealing has been con-
sistently used in docking. Specifically, Baker et al. [6] employ
simulated annealing on a progressively improving approxima-
tion of the energy function. This has been fairly effective but it
is computationally expensive and, thus, applicable to relatively
small problem instances. A number of other recent approaches
have attempted, with some success, to use the funnel-like shape
to guide the global search to the vicinity of the global minimum
[e.g., the semiglobal simplex (SGS) by Dennis and Vajda [7],
and SmoothDock by Camacho and Vajda [8]]. Of most, rele-
vance to this paper is the convex global underestimator (CGU)
method of Phillips et al. [9] where convex canonical quadratic
underestimators are used to approximate the envelope spanned
by the local minima of the energy function. It has been shown
that CGU does not perform well in some cases and that its per-
formance deteriorates as the dimension of the search space in-
creases [7]. We contend that a critical reason for this poor per-
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Fig. 1. (Left) Protein docking funnels and the operation of the docking method SmoothDock [8]. (Right) A funnel-like shaped function and a quadratic function
underestimating the surface spanned by the local minima.

formance is the restricted class of underestimators used in CGU.
This restriction amounts to a lack of flexibility in capturing the
overall shape of the funnels and hence an inability to locate
promising regions.

We use the same strategy of using quadratic convex functions
to underestimate the envelope spanned by the local minima of
the energy function. However, we consider the class of general
convex quadratic functions for underestimation. In this case,
given a finite set of local minima, finding the optimal underes-
timator amounts to solving a semidefinite programming (SDP)
problem, hence the term SDU. The dual to this problem in-
volves linear matrix inequalities (LMIs) which have found ubiq-
uitous use in control theory lately. Another key contribution of
the new method we introduce is the use of a biased exploration
strategy that is guided by the underestimator. We show, theoret-
ically as well as experimentally, that SDU outperforms CGU,
often significantly. Moreover, we show that SDU will indeed
(probabilistically) converge to the global minimum when ap-
plied to a general class of funnel-shaped functions as the number
of local minima used for underestimating the energy function
grows. This suggests that SDU has the potential to be useful
in solving molecular docking problems. A number of numer-
ical results, some involving real instances of the protein-protein
docking problem, reinforce this conclusion.

Therestof thispaper isorganizedasfollows.SectionIIpresents
backgroundmaterialondockingandsurveysvariousapproaches.
Section III presents the SDU method. Comparisons with CGU
are in Section IV. SDU’s convergence properties are discussed
in Section V. Numerical results for a set of test functions are in
Section VI. Some results on docking proteins are discussed in
Section VII. We end with conclusions in Section VIII.

Notational Conventions

Throughout this paper, all vectors are assumed to be column
vectors. We use lower case boldface letters to denote vectors and
for economy of space we write for the column
vector . denotes the transpose of , the matrix (or vector)
of all zeroes, the vector of all ones, the identity matrix, and

the th unit vector. For any vector we write for the L1
norm, i.e., , and for the Euclidean norm.
We use upper case boldface letters to denote matrices and write

for the matrix with element equal to

. We denote by the diagonal matrix with elements
in the main diagonal and zeroes elsewhere. We also

denote by the block diagonal matrix with matrices
and in the main diagonal and zeroes elsewhere. We define

(1)

which is the Frobenius inner product of matrices. Finally, for
any event , denotes its indicator function.

II. PRELIMINARIES AND BACKGROUND

In this section, we provide some biological background on the
docking problem in order to establish the appropriate context for
the optimization methodology we introduce.

State-of-the-art protein-protein docking approaches start by
identifying conformations with good surface/chemical com-
plementarity where the two interacting proteins are considered
rigid bodies. Accordingly, the problem of forming a com-
plex by docking one protein—the ligand—to the other—the
receptor—has parallels with problems arising in rigid body
motion and robot arm manipulation (see, e.g., Murray et al. [1],
Gwak et al. [2]). In particular, one has to control the ligand as
it approaches and docks with the receptor. The ligand’s relative
position lies in the Euclidean group of rigid-body motion,

, which is the semidirect product of (translations)
and the rotation group . The dynamics of the ligand’s
approach to the receptor play an important role in nature but are
hard to model (and computationally prohibitive to simulate) in
the time-scale they evolve. The problem is further complicated
by the fact that proteins are not rigid bodies and experience
conformational changes as they bind (mostly the side-chains
on the interface). The protein-protein docking literature (e.g.,
[8] and the references therein) is predominantly treating the
docking problem as a static problem and this is the view we
will initially adopt for this problem.

Protein-protein docking approaches initially screen confor-
mations by various measures of surface complementarity which
can be efficiently computed using fast Fourier correlation tech-
niques (FFTs). However, when docking unbound conformations
these methods yield many “false positives” (i.e., conformations
that have good score but are far from the native one). An effec-
tive approach used by Comeau et al. [10] is to cluster the confor-
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mations obtained by the FFT filtering based on how close they
are. (A common metric of distance between conformations is
the root mean square deviation (RMSD) of their atomic coor-
dinates). Clustering identifies low free energy regions (funnels)
one needs to further explore. We will be referring to the problem
of exploring a funnel as the medium-range problem. The pro-
posed SDU method aims at solving this problem by exploring
the funnel shape of the energy function. Next we review key
properties of the free energy functions.

A. Free Energy and its Mathematical Properties

Free Energy Models:

At fixed temperature and pressure, a complex of two
molecules adopts the conformation that corresponds to the
lowest Gibbs free energy of the system that includes the com-
ponent molecules and the solvent—usually water—surrounding
them. Thus, in docking calculations the natural target function
to minimize is an approximation of the Gibbs free energy,

, of the receptor-ligand complex, or that of the binding
free energy, . In particular, , where

and are the free energies of the receptor and ligand,
respectively, and both and are independent of the
conformation of the complex; thus, minimizing reduces
to minimizing .

We use free energy evaluation models that combine molec-
ular mechanics with continuum electrostatics and empirical sol-
vation terms [11]. For protein docking applications, the binding
free energy can be approximated as

(2)

where is the change in electrostatic energy upon
binding, is the change in van der Waals energy, and

—the desolvation free energy—is associated with the
removal of the solvent from the interacting surfaces of the pro-
tein and ligand, where the denotes that it includes the change
in the solute-solvent van der Waals energy. The entropy term,

, accounts for the decrease in entropy experienced by
the interface side chains upon binding.

Multifrequency Behavior:

The free energy function can be regarded as the sum of three
components with different frequencies. First, the following
“smooth” component

(3)

changes relatively slowly along any reaction path, where the de-
solvation free energy does not include the solute-sol-
vent van der Waals term. The full contribution of the desolva-
tion forces is estimated by the atomic contact potential (ACP)
[12], where the ACP potential includes the self-energy change
on desolvating charge or polar atom groups and the side chain
entropy loss, i.e., . is
much less sensitive to structural perturbations than and

. The electrostatic energy changes with an in-
termediate frequency, and the frequency of change is very high
for . Thus, the van der Waals component is essentially

a high frequency noise, because on its own it carries very little
information about the distance from the native state.

Funnel-Like Shape:

As discussed in Section I, the concept of the funnel-shaped
energy landscapes (see Fig. 1) has had a significant impact on
understanding protein folding and docking. This behavior has a
physical explanation. Due to the term , the free energy
function defined by (2) exhibits high sensitivity to structural per-
turbations. In addition, in any conformation without steric over-
laps the van der Waals energy term is favorable, resulting in a
number of local minima. Since most random perturbations yield
overlaps, the local minima are separated by high energy barriers.
In the conformations without overlaps, the solute-solute and
solute-solvent interfaces are equally well packed, and thus the
intermolecular van der Waals interactions in the bound state are
largely balanced by solute-solvent interactions in the free state.
Therefore, restricting consideration to such conformations, both

and the van der Waals contributions to the desolvation
free energy can be removed, and the binding free energy is re-
duced to the smooth components described by (3). Thus, in local
minima in which the internal and van der Waals terms are close
to zero, the free energy surface is essentially determined by the
“smooth” free energy component .

B. Implications for Global Optimization and Our Method

Summarizing the discussion thus far it is evident that the
free energy function in (2) has a huge number of local minima
caused by high-frequency terms; primarily the van der Waals
term. Even if one ignores changes in the interface side-chains,
local minimization in [2] enhanced with multistart would
have to be quite lucky to approach a global minimum in some
reasonable time. Generic global optimization approaches (e.g.,
those supported by GAMS [13]) typically require some regu-
larity conditions (e.g., twice continuously differentiable func-
tions) and are not designed for minimizing complex free en-
ergy functions having a huge number of local minima. A de-
terministic branch-and-bound global optimization method, the

method (see [5]), has been a part of a successful pro-
tein-folding approach [14] but it can be costly since it systemat-
ically explores all of the search region. The same will be true for
other deterministic approaches. In fact, this is part of the motiva-
tion of the hybrid approach by Klepeis et al. [15] that combine

with a randomized search approach using ideas from ge-
netic algorithms. To the best of our knowledge, the only system-
atic optimization method consistently applied in protein-protein
docking is simulated annealing [6]. The CGU method [9], which
motivated our work, has also been used in protein folding.

Fortunately, the funnel-like shape of the energy function can
provide some guidance. Suppose we have identified (by FFT fil-
tering and clustering) a number of conformations in the native
energy funnel and we seek to determine the native conforma-
tion. The low-frequency energy terms [cf. (3)] form a smooth
function which can often be well approximated by a convex
quadratic. To exploit this structure we work on the envelope sur-
face spanned by the set of local minima. This surface inherits
the smooth behavior of the low-frequency energy terms. More
specifically, we generate a large number of local minima and
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construct a convex quadratic function that forms the tightest un
derestimator of all of them. This quadratic function suggests the 
location of the deep energy valley containing the native struc
ture. We use this information to iteratively refine our search. We 
note that this approach does not need access to individual energy 
terms; it only requires access to a program evaluating t::.G. 

ill. SDU: SEMIDEFINITE UNDERESTIMATOR METHOD 

SDU consists of two key components: t) underestimating the 
surface spanned by the local minima [see Fig. I (right)], and it) 
using the underestimator to guide further exploration. 

A. Constructing an Underestimator 

Let us denote by f : Rn --+ R the free energy function we 
seek to minimize and assume we have obtained a set of /{ local 
minima f/>1

, ... , 4>K of f(-) . We are interested in constructing a 
convex quadratic function U ( 4>) that underestimates f (-) at all 
local minima l/>i , i = 1, ... , K . Let 

where Q E IRnxn is positive semidefinite (hence, U(-) IS 

convex), b E IRn, and c is a scalar. 
Using an L l norm as a distance metric the problem of finding 

the tightest possible such underestimator U ( ·) can be formulated 
as follows: 

/( 

min ~(!( 4>j) - c- 4>i' Qf/>j - b'l/>j) 
j=l 

s .t . f(4>j)?.c+4>i' Q4>j+ b'l/>J , j = 1, ... , K , Q ~ 0 (4) 

where the decision variables are Q, b, and c, and"~ 0" denotes 
positive semidefiniteness. 

Let now introduce vectors b +, b - ?. 0, scalars c+ , c- ?. 0 
satisfying b = b + - b - and c = c+ - c-, and slack variables 
s = ( 81, ... , 8 K) . Define the block diagonal matrix 

Y £ diag( Q ,diag(b+) ,diag(b- ),c+,c- ,diag(s )) . (5) 

Define F 0 ~ diag(diag(O), - diag(e )), Fj ~ 
diag( 4>1 4>i', diag( 4>i), - diag( 4>i) , 1, - 1, diag( e i ) ), for 
all j = 1, ... , I<, where 0 is the (3n + 2)-dimensional zero 
vector, e is the I< -dimensional vector of ones, and e j is the j th 
unit vector. Let also Ei,j denote the (3n+K + 2) x (3n+K +2) 
matrix with all elements equal to zero except the ( i, j)th 
element which is equal to I. Then, (4) can be written: 

(SDP-P) max Fo•Y 

s.t. Fj• Y = f(4>i) , j = 1, ... , f{ 

Ei,.i• Y = 0, i=n+l , ... , 3n+ K + 2,j = 1, .. . , i-1 

Y ~O W 

where the decision variable is the matrix Y . Problem (SDP-P) 
in (6) is a semidefinite programming (SDP) problem (see [16] 
or [17]). SDP problems can be solved efficiently using interior
point methods [16]. General purpose solvers for SDP problems 
are readily available (e.g., [18]). 

The dual to (SDP-P) in (6) is the problem 
f( 

(LMI-D) min~ ~cif(l/>i) 
j = l 

K 3n+ K + 2 i-1 

s.t. Z = ~XjFj + ~ ~ Wi,j Ei,j - Fo 
j=l 

z ~ 0 

i=n+l j= l 

(7) 
where the decision variables are the xj's and Wi,j' s. Problem 
(LMI-D) can be seen as the problem of minimizing a linear func
tion subject to a linear matrix inequality (LMI). The following 
theorem summarizes the construction of the underestimator. 

Theorem 111.1: Consider a function f : Rn --+ R and a set 
of local minima f/>1

, ... , 4>K of!(· ). Let (Q, b + , b -, c+, C, s) 
form an optimal solution Y of Problem (SDP-P) in (6), 
where Y is defined as in (5). Let U( 4>) £ 4>'Q4> + (b + -
b - )'4> + (c+ -c-). Then U(·) satisfies f (4>j) ?. U(f/>j) for 
all j = 1, ... , I< while minimizing 11(!(4>1

), . .. , f (4>K) ) -
(U(f/>1

) , ... , U(l/>K))Ih· Moreover, the dual to Problem 
(SDP-P) is the LMI problem (LMI-D) in (7). 

Hereafter, we will say that a function U ( ·) satisfying the 
statement of Theorem ill.l underestimates .f ( ·) at points 
4>1 , ... , 4>K. Fig. 1 (Right) illustrates such an underestimator. 

B. Sampling 

Suppose we are seeking the native conformation in some re
gion B. Using a set of local minima 4>1

, ... , 4>K E B of J(·) we 
construct an underestimator U(-) as described in Section ill-A. 
Depending on the samples we used, and assuming that the con
structed underestimator reflects the general structure of f ( ·), the 
global minimum of U(-) , say 4>P, is in the vicinity of the global 
minimum of f( ·). We will be referring to 4>P as the predictive 
conformation. 

Clearly, the distance of the predictive conformation from the 
native one depends on whether the underestimator is constructed 
using a sufficiently rich set of local minima. However, even if that 
is the case, locating the global minimum is difficult since van der 
Waals interactions create a large enough number of local minima 
around the native conformation. Our strategy is to sample in the 
area around 4>P such that conformations close to 4>P are more 
likely to be selected. In addition, conformations with high enough 
energy can safely be ignored. This can be achieved by using the 
following probability density function (pdf) in B: 

g(f/>) = . U(l/>) - Uma.x £ U( l/>) - Umax, 4> E B 
Js(U(4>)- Umax) d4> A 

where Uma:x = max6 U ( 4>) and A denotes the integral in the 
denominator. 

To generate random samples in B using the above pdf we will 
use the so called acceptance/rejection method. Let h( </>) = 1 JV 
be the uniform pdf in B where 11 = J13 df/> . Notice that 

g( f/> ) '!:: V(U(l/>P~- Uma.x) h(c/Y) 'iff/> E B 

and set R( 4>) equal to the ratio of the left hand side over the 
right-hand side of the above, i .e., 

R(f/>) £ U(f/>)- Uma.x 
U(l/> ) - Umax 
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I) Generate unifonnly distributed random variables x 1 E B1J 
and X2 E [(, l J. 

2) If x2 ::; R(x 1), stop and output cp = x 1; otherwise, return 
t.o Step I. 

Fig. 2. Algorithm generating a sample in B drawn from g(·) with associated 
density in [(, lJ . 

In order to discard high energy conformations we are interested 
in sampling points in B with associated probability density in 
some interval [(, 1], where ( E [0, 1). The algorithm in Fig. 2 
outputs such a sample point. To see that notice that in Step 1 we 
generate uniformly distributed samples in the set { ( x, y) I x E 
B, y E [(, 1]} . The rule of Step 2 accepts uniformly distributed 
samples in { (x, y) I x E B, ( :::; y :::; g(x)} . Thus, the output</> 
of the algorithm is distributed in B according to g( ·) . 

We finally note that the algorithm in Fig. 2 requires knowing 
U max · In many cases, this is straightforward to obtain. Consider 
for instance the case where B is a polyhedron; one special case 
of practical interest is when B is a box set of the type { x l li :S 
Xi :S Vi, i = 1, . .. , n }. Then, since U ( ·) is convex it achieves 
its maximum at an extreme point of B. Alternatively, one can 
use an estimate of Umax. e.g., maXi U(<f>i) . 

C. The SDU Algorithm 

We now have all the ingredients to present our SOU algo
rithm. The algorithm seeks a global minimum of JO in some 
region B of the conformational space; it is presented in Fig. 3. 
Throughout the algorithm, we maintain a set L of interesting 
local minima obtained so far including the best such local min
imum denoted by <f>G. The evolution SOU depends on the pa
rameters K , ( E [0, 1], m and E, and on the way we define the 
neighborhood N(</>P) in Step 5. These will be appropriately 
tuned in every problem instance. 

A couple of remarks on the proposed SOU algorithm are in 
order. The algorithm combines exploration with focalization in 
energy favorable regions of the conformational space (energy 
funnels). The exploration is in fact biased towards these energy 
favorable funnels. This is intended to avoid computationally ex
pensive exploration in areas of the conformational space that are 
not likely to contain the native structure. 

We should point out that we make no claims that SOU con
verges to the global minimum of f (-) . In fact, it is straight
forward to see that it will not find the global minimum if we 
do not use enough local minima to determine the underesti
mator or when f ( ·) is arbitrary and does not have a funnel-like 
shape. However, later in the paper we will provide arguments 
that (probabilistically) guarantee convergence for funnel-like 
functions under a suitable set of conditions. 

IV. THE IMPORTANCE OF THE UNDERESTIMA'IDR' S STRUCTURE 

Next, we review some earlier work, study its limitations, and 
assess the relationships with SOU. Let us consider the SOU al
gorithm under the following key modifications. 

1) Underestimation: In deriving U ( ·) impose the constraint 
that Q is a diagonal positive semidefinite matrix. Then the 
semidefinite constraint can be replaced by a non-negativity 
constraint for all diagonal entries. It follows that Problem 
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n 
I) I nitialization: Starting from I( random _points in B1J 

perform local minimization to obtain K (K;::: (n+l)(n +2)/2) 
distinct local minima 4> 1, ... , .pK of f (-) . Set .2 = 
{ cp1, ... , cpK} and cpC = fLrg rnin</>E(</>' .... ,<J>K) j (cpi). 

2) Underestimation: Solve Problem (SOP-P) in (6) to ob
tain the undereslimator U(</>) . Set the predictive confor
mation equal to a minimizer of U(·), that is, when Q is 
invertible .pP = -~Q-1 b. 

3) Elimination: Discard unfavorable local minima from 2 ; 
more specifically, set :t' : = :t' \ { 4> E :t' I R( 4>) < 
( and cf> ,.0 4>0 } . 

4) Focalization: Define a neighborhood JV ( .pP) ~ B1J of 
.pP Set B1J := JV(q,P) . 

5) Exploration: 

a) Start from q,P and use local minimization to obtain 
... p - .. p 

a local minimum cf> of f (-) . If 4> E !J$ and 
A p A p G 
4> (/. 2, set :t' := :t' U {4> } and cf> := 

arg min<t>e{<J><' .4>'' 1 f( 4> ). 
b) Ob[ain m samples from [he sampling algorithm of 

Fig. 2. Using these samples as starting points perform 
local minimization to obtain m distinct local min.ima 
x1 , .. . , xm of J(-) . Set :t' := :t'U {xI x = 
x 1, ... , x"',x E B?J, x ~ 2'} and 

.p0 := arg min ! (4>). 
4>=4>G ,xl , ... ,xrn 

<f>E$ 

6) Termination: If IJ</>0 - t/>Pll < € or if there is no 
progress in reducing ! (4>0 ) over several iterations then 
stop; otherwise go to Step 2. 

Fig. 3. SOU algorithm. 

(SDP-P) can be reformulated as a linear programming 
problem (LP) which can be easily solved. 

2) Sampling: Replace our biased sampling with random (uni-
form) sampling in the neighborhood N( <f>P) of </>P. 

The resulting method is the so called convex global underes
timator (CGU) method by Phillips et al. [9] for minimizing 
funnel-like free energy functions in molecular modeling prob
lems. We will argue that these two differences with our proposed 
SOU drastically affect the performance of the corresponding 
optimization method. In particular, limiting the underestimator 
search to the class of canonical parabolas substantially reduces 
the efficiency and accuracy of CGU for general problems where 
the surface spanned by the local minima is not typically aligned 
with the canonical coordinates defining the underestimating 
parabola. Dennis and Vajda [7] report many such cases where 
CGU performs poorly. Some attempts in addressing this lim
itation have been made by Rosen and Marcia [19] but again 
handling special cases. 

A. Comparing the CGU and SDU Underestimating 
Approaches 

As we discussed in Section ill, a quadratic underestimator 
will not be informative if either t) f( ·) is not funnel-shaped and 
the envelope of local minima can not be well approximated by 
a convex quadratic, or it) if we do not use a rich enough set 
of local minima in constructing U ( ·) . In the following we wish 
to remove these two potential sources of poor performance in 
order to better assess the underestimating power of CGU and 
SOU. More specifically, we consider the "ideal" case of under
estimating a convex quadratic given by f( t ) = t'Qt + b't + c, 
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where Q t 0. We assume that t) an infinite number of sample 
points of f ( ·) in some compact sampling region B is at our dis
posal when we construct the underestimator, and it) f ( ·) is con
tinuous on B. The construction of the underestimator based on 
utilizing all sample points in B can be formulated as the fol
lowing (infinite-dimensional) optimization problem: 

min i (f(t ) - U(t )) dt s.t . f( t ) 2: U(t ), 
tEl3 

t E B 

(8) 
where the decision variables are the (yet unspecified) parameters 
defining U ( t ). 

Suppose first that we use the SDU underestimating approach 
and seek to construct a function U ( t ) = t' Q t + b' t + c, where 
Q t 0. Consider the problem in (8) for such a U(t ). The next 
proposition is immediate. 

Proposition N.l: SDU can underestimate f(-) exactly, in 
particular, (Q, b , c) = (Q, b , c) is an optimal solution of(8). 

We next consider the CGU underestimation approach. Specif
ically, we seek to construct a function U ( t ) = t'Dt + b' t + c, 
where D = diag(d1 , . .. , dn) and di 2: 0 for i = 1, ... , n . 
Consider the problem in (8) for such a U ( t ). For simplicity 
of exposition let us assume that the search region B is the hy
percube defined as B = B1 x · · · x Bn where Bi = [li, Ui ] 

and tLi - li = T for all i = 1, . .. , n. We denote a (t ) 
( ti, · · . , t?,, t 1 , ... , ln, 1), 

and z = (db .. . , d,., b1 , ... , b,., c) . Then, after some algebra, 
(8) becomes equivalent to 

(LSIP-P ) max h'z s.t . a' (t )z ~ f( t ), t E B 
(9) 

where z is the decision vector. Note that (LSIP-P) involves an 
infinite number of constraints. A problem with such a struc
ture is known as the linear semi-infinite programming (LSIP) 
problem (see [20]). Its dual can be formulated in measure space 
as follows: 

(LSIP-D) min l .f(t )dp,(t ) 

s .t .fa a (t )dp,(t ) = h , p, E M+( B) (10) 

where M+(B) denotes the set of non-negative regular Borel 
measures on B. 

1) Approximate Problem Converges to LS/P: Next we ex
plore the relationship of the underestimator obtained by solving 
(LSIP-P) in (9) to the underestimator obtained as in Sec
tion ill, namely, by using the function values f ( t 1 ), . . . , f ( t I<) 
at a set of samples t 1 , ... , t K from B. 

We introduce some additional terminology and notation. 
Let M2n +l be the cone generated by a (t ) for t E B, i.e., 
Mzn+l = {w I w = J8 a(t )dp,(t ),p, E M+( B)} . We denote 
by int(M2n+I) the interior of M2n+1 · We also denote by 
Lf (h , B) the level sets of the (primal) problem (LSIP-P ), in 

particular, L~(h, B ) = {z I a' (t )z ~ f (t ),Vt E B; h'z 2: B}. 
We will say that the primal (LSIP-P) is consistent if it has a 
feasible solution. We will say that (LSIP-P ) is superconsistent 
if the interior of the feasible set is non-empty, that is, if there 
exist z* such that a' ( t )z* < f ( t ) for all t E B (this is Slater's 
condition). Similarly, we will say that the dual (LSIP-D) is 
consistent if h E M2n+l; the dual will be termed superconsis
tent if h E int(M2n+l) · 

Lemma N.2: Assume that (LSIP-P) is consistent. Then, 
(LSIP-D) is superconsistent and all primal level sets L~ (h , B) 
are bounded. -

Proof' Recall that we have assumed B to be compact and 
f(-) continuous on B. We will first show that (LSIP-D) is su
perconsistent. To that end, note that the uniform measure in B 
is a feasible solution of (LSIP-D ), which implies that h E 

i\.12n+l· Furthermore, the boundary of M 2n +l consists of vec
tors a(t *) for some t * E B. Observe that h is not on the 
boundary, i.e., h E int(A12n+I) which establishes the super
consistency of (LSIP-D). Using a result from [20, Th. 6.11] 
the boundedness of all primal level sets follows. • 

Next consider an approximate finite problem constructed 
from (LSIP-P) by only enforcing a finite number of con
straints, say for t 1 , ... , t K E B. More generally, let 73 c B be 
a finite subset of B and form the LP 

(LP-P) max h' z s.t . a' (t )z ~ f( t ), t E 73 (11) 

which can be seen as a finite approximation of (LSIP-P ). De
fine d(B) = maxteB minre'B li t - t il as a metric of density of 
73 in B. Then, the boundedness of all (LSIP-P) level sets suf
fices to guarantee the convergence of the (LP-P) solutions to 
the (LSIP-P) solutions. The result, which is from [20], is pro
vided in the following theorem. 

Theorem N.3: For every € > 0 there exists 8, > 0 such 
that for all B C B with d(B) < 8, it is the case that (LP-P ) 
is solvable, and for every solution z of (LP-P ) there exists a 
solution z* of (LSIP-P) such that liz - z*ll < c. 

The result is insightful because it suggests that when we use 
enough samples the quality of the CGU underestimator does 
not depend on sample selection but rather on the fundamental 
structure of the underestimator function. 

2) Limitations of the CGU Underestimator: We now have 
the necessary machinery to analyze the CGU underestimator. In 
particular, we consider a class of functions to be underestimated 
and demonstrate how the CGU underestimator fails. 

Suppose we wish to underestimate f (t ) = t'Qt + b' t , where 

n 2: 2, ai > 0 for all i , f3 < 0, and a 1 az - {32 2: 0 to 
guarantee Q t 0. This choice of Q can be seen as the sim
plest Q with off-diagonal elements; the argument we present 
next can be generalized to more general cases as well. Let the 
underestimator be given by U(t ) = t ' Dt + b' t + c, where 
D = diag(dt, ... , dn) t 0, b = (bt , ... , bn) and c E R. The 
CGU underestimator is informative if it manages to locate the 
minimum of f ( t ). In particular, we would like the minimizer of 
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U(t ) to coincide with the minimizer of f(t) . We will show by 
contradiction that this is not possible in general. 

Consider an instance of the underestimation problem at hand 
where l3 is the hypercube defined as l3 = !31 X · · · X Bn where 
ali Bi's are identical and given by Bi £ [- 2T /3, T f3J for all 
i = 1, ... , n and T > 1. (LSIP-D) takes the form 

n n 

(LSIP-D ) min 2::C~:ilz + L hbi + 2,8Et,[t1t2J 
i = l i = l 

s .t . h a(t )dM(t ) = h , 11· E M +(f3) (13) 

where EJ.' [·J denotes expectation with respect to p., !2 = 
(1/T) J13 , t 2dt = T 2 j9, and 11 = (1/T) J~. tdt = - T /6. 
Since ,8 < 0 the dual problem is equivalent to the problem of 
selecting a measure /.L in order to maximize E,.. [t 1tzJ subject to 
the constraint that the first and second moments of the marginal 
distributions under t£ match those of the uniform distribution 
(cf. definition ofh in Section IV-A). However, for any measure 
/.L E M+(B) the expectation Et,[(t1 - t 2?J is nonnegative, 
hence 

It follows that at optimality the above inequality holds with 
equality, that is, t 1 and tz are colinear. 

Next, let v (LSIP - P ) and VcLSIP- D) denote the optimal 
values of (LSIP-P) and (LSIP-D), respectively. We have 
already shown (cf. Lemma IV.2 ) that (LSIP-D ) is super
consistent. Moreover, the argument in the previous paragraph 
suggests that V(LSIP - D ) is finite. Consequently, (LSIP-P) 
has an optimal solution and V(LSIP-P) = V(LSIP-D ) (cf. [20, 
Th. 6.9]). In the terminology of [20] we have perfect duality. 
The necessary and sufficient conditions for optimality of a 
primal-dual pair are primal feasibility, dual feasibility, and 
perfect duality. 

Let ( z, fj,) be an optimal primal-dual pair, where z = 
(dt, ... , dn, bt, ... , bn, c), and [), is a measure in M +(f3) with 
the properties identified previously. The optimality conditions 
are 

n n n n 

2: ttdi + 2: tJJi + c::; 2:t?,ai+2Ptttz+ L tibi ,'v't EB 
i = l i = l i = l i = l 

(14) 

h a(t )dfj,(t) = h, [L E M+(B) (15) 

n ·n n n 

L I2di +Lltbi+c = L ail2+ L ftb.;+ 2Plz. (16) 
i= l i=l i=l i= l 

Consider now the primal feasibility condition (14) at t = 0 
and at t = - 2Te/3. These two inequalities along with (16) 
imply c = 0. Furthermore, (14) at t = - Te/3 and at t = Te/3 
along with (16) yield 

n 

2:<bi - bi) = o. (17) 
i=l 
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Next, fix some j E {3, . .. , n} and some k > 3/T and apply 
(14) at t such that ti = -1/k, t1 = 1/k for alll =j:. j and at t 
such that ti = 1/k, t1 = - 1/k for alll # j . These, along with 
(17), c = 0, and (16), imply 

bt + b2=b1 + b2 bj=bj,}=3, ... ,n. (18) 

Now, for any j E {3, ... , n} and some k > 3/T apply (14) at 
t such that ti = .,fijk, t1 = 1/k for all l =j:. j and at t such that 
ti = 0, t1 = 1/k for alll =j:. j . These inequalities, along with 
(17), c = 0, and (16), lead to 

d1+dz=a1+az+2,8 dj=aj,j=3, ... , n . (19) 

To proceed consider z with (; = 0 satisfying (18) and (19). 
Let x = J1 - a1 - ,8 and y = b1 - bt . We will show that 
(x , y) = (0, 0) . Assume otherwise. Using (18) and (19) the 
primal feasibility condition (14) reduces to 

(t1 - tz)[P(tt - tz) + x(t1 + t2) + yJ ::; 0, 'v't1, t2 E Bt. (20) 

Let 0 < 8 < T /3 and apply the above at (t1, t2) = ( 8, - 8) and 
(t1,t2) = (- 8,8) . It follows 

2{38 ::; y ::; - 2{38. 

If y =j:. 0, by selecting 8 close enough to zero we can violate 
primal feasibility. Therefore, y = 0. Further, let 1 < k < T and 
apply (20) at (t1 , h) = (k/3 , 1/3) and (tt, t2 ) = (1/3, k/3) . It 
follows: 

k - 1 1 - k f.l __ <x< f.l __ 

fJk+ 1 - -~-' k+l' 

If x =j:. 0, by selecting k close enough to one we can violate 
primal feasibility. Therefore, 3.; = 0. In summary, we have 

d.,= a.;+ ,8, i = 1, 2 dj = aj, j = 3, ... , n 

b1 =bj , j =l , .. . ,n c =O. (21) 

The minimum of the CGU underestimator, say f, is given by 
f = -(1/2)f> -t b which due to (Section IV -A.II) yields 

A bi , , A bj , 
ti = -

2
( . ,8)' t = 1, 2 tj = - -

2 
. , J = 3, ... , n. a,,+ a_1 

Clearly, f is different from t * in general and the CGU underes
timator can not locate the minimum of f ( ·). We summarize the 
result of this subsection in the following theorem. 

Theorem N.4: Let f (t ) = t'Qt + b't, where Q t 0 is 
given in ( 12). Further, let (J ( t ) = t'Dt + b' t + c be the function 
formed from the optimal solution to (LSIP-P), i.e., the optimal 
CGU underestimator to J( t ) . Then, in general, the minimizer of 
the underestimator is different from the minimizer of f (t ). 
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The result of Thm. IV .4 is significant since it establishes that 
the CGU underestimator cannot locate the minimum of f(-) 
even if it uses an infinite number of samples. In contrast, ac
cording to Proposition IV.l and Theorem IV.3, SOU will find 
the minimum off ( ·) as the number of samples grows to infinity. 

V. ON SOU's CONVERGENCE 

In this section, we provide a rough analysis of the SOU algo
rithm and show that under appropriate conditions it converges 
to the global minimum of !(·). Since the free energy functions 
we seek to minimize are funnel-like, for the remainder of this 
section we will impose a set of structural assumptions on f (-) 
and the search region B that reflect this structure. We denote 
by epi(f) the epigraph of f(-) which is defined as epi(f) = 
{(</>, w) I 4> E B, f (</>) ::; w } . We also denote by conv(S ) the 
convex hull of any set S . 

Assumption A: Assume that f ( 4>) satisfies the following set 
of conditions: i) it is continuously differentiable; ii) f( ·) has 
a unique global minimum in B; iii) B is compact; iv) for all 
local minima 4> off ( ·) there exists an open set such that 4> is the 
unique minimizer of f ( ·) within this set; ( iv) the extreme points 
of conv(epi(f)) lie on a quadratic function U(</>) = 4>'Q4> + 
b' <f>+c; v) f) ( 4>) has a unique global minimum which is identical 
with the global minimum of f(-) in B. 

For functions that satisfy Assumption A we will say that they 
have a funnel-like shape [see Fig. 1 (Right)]. The next proposi
tion provides a sufficient condition for exactly determining the 
quadratic function [; ( ·) which tightly underestimates all local 
minima of f( ·) . 

Proposition V.1: LetAssumptionAprevail. ConsidertheSDU 
algorithm of Fig. 3 and suppose that in Step 1 we obtain at least 
K = ( ( n + 1) ( n + 2)) /2 distinct local minima 4> 1 

, ... , q/( of 
f ( ·) which are extreme points of conv( epi (.f)). Then, the under
estimator U ( ·) obtained in Step 2 is identical to U ( ·). 

Proof" Constructing the underestimator U(-) is equivalent 
to solving problem (4). Clearly, (Q, b , c) = (Q, b, c) is an op
timal solution because it is feasible and achieves a zero cost. At 
local minima tf we have U ( tf ) = f ( </>j) for all j = 1, . .. , K 
which form a linear system of equations. This linear system 
has (n2 + n)/2 unknown elements of Q plus n unknown el
ements of b plus the unknown value of c. It follows that for 
K 2: ((n + l)(n + 2))/2 we obtain the exact quadratic func
tion which passes from all extreme points of conv(epi(f)) . • 

The following theorem establishes that given sufficient sam
pling of the search region B the S 0 U underestimation procedure 
can locate the global minimum of f ( ·) which we denote by </> * . 

Theorem V.2: Let Assumption A prevail. Consider the 
SDU algorithm of Fig. 3 and assume that B contains at least 
((n + 1)(n + 2))/2 distinct local minima of f(-) which are 
extreme points ofconv(epi(f)). Suppose that in Step 1 of the al
gorithm we obtain K local minima </>1, .. . , 4>1( of f( ·) starting 
from uniformly distributed starting points in B. Then, the global 
minimum </>P of the underestimator U( ·) obtained in Step 2 of 
the algorithm converges in probability to the ptobal minimum 
</>* of f( ·) asK --> 00, namely, limJ(- oo P [¢> = </>*] = 1. 

Proof" Due to Assumption A function J(-) satisfies 
all the conditions of the capture theorem [21, Prop. 1.2.5]. 
In particular, for every local minimum </>j of f ( ·) which 
is an extreme point of conv(epi (f)) there exists an open 
set Sj = {4> I 114> - ¢>111 < Ei} such that any convergent 

local mmuruzation algorithm initialized with any point in 
Sj converges to 4>i .1 We assumed that B contains at least 
M = ((n + 1)(n + 2))/2 distinct local minima of J(-) which 
are extreme points of conv( epi(f)) . Without loss of generality 

let</>
1
, ... , </>M E Bandsetpj = (J.PES ·ns dcP)/(j~EBd</>), 

for j = 1, ... , M . Note that there exists ~n e > 0 such that 
P.i > € for all j . By virtue of Proposition V.l we need at least 
M = ((n + l)(n + 2))/2 distinct local minima of f( ·) which 
are extreme points of conv( epi(f)) in order to exactly construct 
U(</>) ; this suffices to yield</>* . Let P [success] the probability 
that we do indeed obtain M distinct local minima of f( ·) which 
are extreme points of conv(epi(f)) by randomly sampling K 
points in B and performing local minimization starting from 
every sample. Let also A i the event that such random sampling 
yields </>1 , j = 1, .. . , M, at least once. For any event A we 
denote by A its complement. We have 

P[success] 2: P [A1 n · · · n AM] = 1 - P[At u · · · u AM] 
M M 

"' - "' I' 2:1 - 6 P [Aj ] = 1 - 6 (1-pj)'. (22) 
j =l j = l 

The first inequality shown previously is due to the fact that on 
the right-hand side we consider only local minima </>1

, .. . , </>M; 
B may contain additional local minima which are extreme points 
of conv(epi(f)) . The second inequality above uses the union 
bound. Next observe that since the P.i are bounded away from 
zero the right hand side of (22) converges to one as K --> oo. • 

We can think of Theorem V.2 as a simple sanity check of 
the SOU underestimation approach. It implies that given an ap
propriate funnel-like structure, SOU can locate the global min
imum of the free energy function with probability approaching 
one as the number of random samples in B increases. Actual 
free energy functions are expected to deviate from the structure 
put forth in Assumption A. In particular, the local minima of 
f(-) may not be tightly underestimated by a quadratic function 
and/or the global minimum of a quadratic underestimator may 
not coincide with</>*. These factors have motivated the form of 
the SOU given in Fig. 3. 

VI. NUMERICAL RESULTS FOR A SET OF TEST FuNCTIONS 

In this section, we apply SOU to test functions that were se
lected to resemble free energy functions. Throughout we com
pare SOU with CGU.2 Here, and for all numerical results re
ported in this paper, we have used the SOPA [18] semidefinite 
programming solver. 

The test functions we use are from [7] and are given by 

!(4>) = h(</>) + h(<l>) + /3(4>) 
n/2 n 

it(</>)= L(a</>~i- 1 +b</>~.J, !3(4>) = L Aisin('y¢>2i)l 
i=1 i = l 

n/2 

h(<l>) = I:!-ccos(a</>2i- 1) - dcos(/34>2i)] (23) 
i=1 

1 For simplicity of the exposition we assume that we can determine t/>; exactly. 
Local minimization algorithms can approach t/>j arbitrarily closely. Using con
tinuity arguments a similar proof can establish that 4>P converges in probability 
to an arbitrarily small neighborhood oft/> • as [( - :x> . 

2We followed the original CGU algorithm as described in [9] and imple
mented in code made available by the authors of [9]. 
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Fig. 4. SOU derives tighter underestimators. 

where¢ = (¢1 , ... , ¢n), a = l , b = 2, c = 3, d = 4, o: 
3?r, {3 = 47T, and ~r = 3.37T . Note that the origin is the global 
minimum off(-) . The parameter A determines the amplitude 
of the high frequency term !3(-), thus, the larger A the more 
"noisy" and harder to optimize we expect f(-) to be. 

First, and to illustrate once again the flexibility that a general 
quadratic underestirnator adds, we consider a version of the test 
function in (23) for n = 2 and rotate the coordinate system with 
respect to the two axis by 45° .3 Fig. 4 (top) depicts the underesti
mators (along a certain vertical hyperplane) obtained by CGU and 
SOU, denoted by U cc u ( ·) and Us D U (·) respectively, in their first 
iteration based on 20 ( = 8n + 4 for n = 2 as required by CGU) 
uniformly sampled local minima. Uccu(r/>) has the global min
imum at (0.5225 , -0.7238) and Usv u(r/>) at (0.2669, 0.4581), 
which is closer to the true global minimum (0, 0). The bottom 
figure in Fig. 4 depicts the contours of the two underestirnators 
illustrating that they predict rather different global minima. 

Our next example, concerns the six-dimensional version of 
the test function in (23). This is in fact the appropriate space for 
rigid docking problems (translation and rotation). We applied 
both CGU and SOU and report various indicators of their per
formance. For both cases the search region B was selected as the 
box { ¢ I - 100 :S r/>i :::; 10, i = l ... , n} so that the global 
minimum at the origin is not at the center of B. We used 8n + 4 
initial samples in Bas required by CGU (which is more than what 
Proposition V.l suggests for SOU when n = 6). We use the fol
lowing notation: t) ¢~denotes the initial predictive conformation, 
that is, the minimum of the initial underestirnator we obtain (Step 

, p 
2 of SOU); it) ¢ 0 denotes the local minimum off(·) obtained 

3-fhat is, we minimize f (R - 11/>) where R is the product of axis rotation 
matrices, one for each axis. 

0.5 1.5 2 

TABLE I 
CGU AND SOU APPLIED TO THE TEsT FuNCilON IN (23) WHEN n. = 6 

Method CGU sou CGU sou CGU sou 
A 10 20 30 

<P~ D(<Po) 0.701 0.448 1.343 0.772 1.468 0.983 
17q, f> 0.291 0.164 1.185 0.295 0.659 0.429 

D(¢~) 0.864 0.654 1.558 1.155 1.713 1.466 
. p a;p:; 0.527 0.558 1.281 0.802 0.921 0.930 

<Po 
f(¢o ) 18.260 13.151 56.!59 48.955 92.472 76.981 

(! ! (4>.':> 13.532 12.435 35.353 21347 28.816 29. 100 

D(<Pv) 0.752 0.435 1.400 0.897 1.723 1.067 

</JC (! q,O 0.578 0.304 0.695 0.631 0.729 0.566 

JW'l -3.424 4.659 15.247 28.911 26.321 49.757 
l7 f( <f>O) 6.425 9.435 7.304 13.810 9.298 20.167 

?)(%) 69 95 46 88 41 83 
ltf 157.30 91.67 153.66 91.48 169.52 92.38 

by starting the local minimization at¢~; iit) ¢ G denotes the best 
local minimum off ( ·) foundthroughouttheevolution of the algo
rithm; iv) D( ¢ ) denotes the (Euclidean) distance of a conforma
tion¢ from the known optimal conformation which is at the origin, 
i.e., D(¢) = (2::::~1 ¢'f)112 ; v) TJ denotes a metric of success of 
the corresponding algorithm adjusted to the difficulZ?: of the op
timization problem, more specifically, TJ = 1 { D( ¢ ) < 1} for 
thecaseA = 10,1] = 1{D(¢ G) < 1.2}forthecaseA = 20, 
and 17 = l{D(¢ G) < 1.5} for the case A = 30; and, finally, 
vi) n f denotes the number of times the corresponding algorithm 
evaluates the function f ( ·) during its course. 

Table I reports results for the function in (23) and Table IT 
(left) reports results for the function in (23) when we rotate the 
coordinate system by 60° with respect to all six axes. In each of 
these tables we considered three problem instances for A equal 
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TABLED 
LEFT: CGU AND SOU APPLIED TO THE TEsT FuNCTION IN (23) WHEN n. = 6 AND THE COORDINATE SYSTEM IS RarATED BY 60° WITH REsPECT TO ALL SIX 

AXES. RIGHT: SOU APPLIED TO THE 1 B RS (TOP) AND 1 MLC (BarroM) 

Method ASA I CGU I SOU ASA CGU I SOU ASA 
A 10 20 

</{ D(<!>o ) 3.506 0.456 l l.528 0.731 
l7q,f' 2.548 0.184 25.15 0.302 

D(¢ol 3.306 0.659 4.722 0.829 
.p "(!,; 1 736 0.639 2.991 0.440 

<f>o 
J(¢o ) 50.769 25.649 109.156 66.150 

qt<4>"> 27.153 12.260 82. 185 23.013 

D(<l>'' ) 2.66 1.837 0.490 3.53 2.539 0.799 4.16 

<f>G u,c 0.92 0.672 0.322 104 0.952 0.509 1 13 
!(<!>'") -0.87 8.108 17.006 9.0 1 26.319 49.985 19.53 
'7 f1 <f>G 7.48 5.19 10.46 10.5 9.45 17.01 12.28 

1)(%) 0 7 93 0 3 86 0 
'nJ 86106 23036 9189 81500 229.84 85.95 82273 

to 10, 20, and 30, respectively. For each case, we performed 100 
independent runs of both CGU and SDU.4 The various values 
we report are the means of the corresponding quantities over the 
100 independent runs. We also report the corresponding stan
dard deviations; CJ x denotes the standard deviation of X. 

We should note that the most important performance metric 
is the closeness of the conformation found to the best one (mea
sured by D(qP) and 17) . There are a number of reasons for this 
preference, including that t) the 3-D structure of the bound com
plex determines its function, ii) molecular simulation may be 
used to discover the native conformation starting from a confor
mation close to it, and iii) the energy evaluation models used by 
molecular docking algorithms are approximations of the actual 
free energy function. As a result, a conformation closer to the 
native one (like the ones SOU discovers) is more useful than 
some deep local minima further away (like the ones CGU may 
discover). 

For the cases where the test function is not rotated, CGU, 
not surprisingly, performs reasonably well. SOU produces con
formations with somewhat higher energy but closer to the na
tive one. The performance difference between SOU and CGU 
is more dramatic in the cases where the test function has been 
rotated. In the three cases considered CGU fails to discover a 
conformation close enough to the native one while SOU largely 
succeeds (observe the differences in 7]). The key reason, we be
lieve, is that SOU can better capture the structure of the native 
funnel, which is used to bias sampling in that area. This latter 
point is perhaps more clearly illustrated in Fig. 5. We draw his
tograms of the distance of the predictive conformation during 
the evolution of both algorithms. Histograms k = 1, ... , 6 ap
pearing from top to bottom correspond to 4{ obtained at the kth 
iteration. The horizontal axis plots the values of D(t/>n (D(t/>G) 
for the bottom graph) and the vertical axis plots the percentage 
of problem instances (out of the 100 runs). It can be seen that 
SOU starts with a much better initial predictive conformation 
than CGU and maintains its predictive conformation within 2 
units of the native one at all subsequent iterations. The best local 
minimum found by SOU is not always within l unit, but in 84% 
of the cases it was within 1.5 unit (versus 4% with CGU). 

We also compared SOU and CGU to a commonly used 
simulated annealing algorithm, the ASA algorithm in [22] (see 

4Note that for each run a number of random samples in B are been generated. 

CGU I sou 
30 

11.727 l.035 
20.629 0.400 

i 4>f 4>{ 4>'i f (<P" ) D( <P" ) 
I -0.195 -2.716 0.702 -65.58 2.82 
2 -0.403 0.282 -0.1 97 -102.25 053 

8.614 1259 
13.424 0.661 i cf>G q/f 4>f/ f( <P"') D(<P"') . I 

415.843 95.0605 I -0.831 -0.935 1.428 -24.30 1.90 
166964 29.169 2 -0.831 -0.935 1.428 -24.30 1.90 
3.0 13 1.128 3 0.056 -0.444 -0.550 -64.57 0.70 
1 11 7 0.698 4 0.056 -0.444 -0.550 -64.57 0.70 

42.614 75.172 5 -0.144 0.764 0.059 -69.29 0.78 
12.18 22.28 6 -0.144 0.764 0.059 -69.29 0.78 

4 84 
246.74 89.77 

7 -0.033 0.549 0.287 -71.19 0.62 

Table II). Even though ASA reaches some deep local minima it 
ends up converging far away from the global minimum. 

In terms of computational efficiency and running time, CGU 
and ASA take on the order of a few seconds in a top-of-the-line 
PC and SOU takes on the order of 5 minutes without partic
ular effort at optimizing the code. The key reason is that SOU 
solves a number of (relatively large) SOP problems. However, 
SOU performs much fewer function evaluations (by a factor of 
3 compared to CGU and by a factor of 1000 compared to ASA 
as it is evident by the n 1 values in Table II). For the test func
tions we considered in this section the function evaluation time 
is negligible using (23). Yet, in docking actual proteins function 
evaluations (e.g., using CHARMM [23] or other complex po
tentials) dominate all other tasks; for instance, in the results we 
report in the next section function evaluations take more than 
90% of the running time. 

VII. APPLICATIONS IN RIGID-BODY PRarEIN DOCKING 

In this section, we report results from applying SOU to a 
number of protein-to-protein docking instances. We assume that 
both proteins are rigid bodies. This is certainly true for their 
backbones and, as we will see, we will allow some flexibility 
in determining the conformation of the side chains in the inter
face between the two proteins. We consider 3-D problems where 
one protein is held fixed, both proteins are oriented based on in
formation we obtain from the known bound structure, and we 
seek to determine the position of the second protein in the bound 
structure with respect to the first one. We constrain these three 
translational variables to be in a lOA cube centered around the 
origin of the coordinate system, which corresponds to the na
tive position of the ligand. That is, we have already identified 
the dominant funnel of the energy function and seek to solve the 
medium-range energy minimization problem within this funneL 

The (free) energy functional we minimize includes van der 
Waals interactions (flEvdw ), the desolvation energy (flEdes) 
and the electrostatic energy (flEetec)- We use the software 
package CHARMM [23] to evaluate the free energy and to 

perform local minimization. We allow side-chains to be flex
ible during the local minimization phase; this is critical as 
side-chains in the interface between the two proteins can not be 
considered rigid and they are packed in a way that minimizes 
the overall free energy of the bound complex. 
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CGU sou 

7 

4 5 6 7 3 4 5 6 7 
Distance bins to the global minimum ( D( · ) ) 

Fig. 5. Histograms of predictions and final solutions reported by CGU and SOU for the case corresponding to A = 30 in Table II (left). 

TABLE ill 
SOU APPLIED TO 2PTC 

i ¢/( ¢P 2 ¢P .~ J(tj/' ) D(tj/' ) 
I 1.001 -2.555 1.395 -25.98 3.08 
2 1.307 -2.369 1.363 -28.77 3.03 
3 1.088 - 1.6 10 1.3 10 -33.47 2.34 
4 1.083 -2.6 12 -0.120 -34.46 2.82 
5 1.617 -1.750 0.9 19 -36.42 2.56 
6 0.888 -1.297 0.083 -46.37 1.58 
7 -0. 182 -0.587 0.529 -49.98 0.81 
8 0.170 -0.669 -0.387 -53.93 0.82 

In Table II (right) and Table ill we report results for the com
plexes l BRS (barnase/barstar), lMLC (a monoclonal antibody 
and lyzozyme complex), and 2PTC (a trypsin-inhibitor com
plex). The bound structure for each case has the ligand centered 
at the origin, that is, the optimal solution is (0, 0, 0). The ini
tial search region B is a lOA cube. In each iteration (indexed by 
i in the tables), we report the best structure found so far, qP, 
the corresponding energy f(t/JG) (in kcaVmol), and the RMSO 
distance D( t/JG) from the native structure (inA). As discussed 
earlier, the key measure of success is the proximity of D(tjJG) 
to zero. 

The evolution of SOU in all three complexes considered is 
depicted in Fig. 6. A better illustration is given in Fig. 7 for the 
lBRS complex. In both figures we plot the fixed receptor. We 
generated 28 random positions of the ligand in the initial search 
region and in the left figure we plot a sphere at the center of 
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Fig. 6. Evolution of SOU for the 1 BRS, 1 MLC, and 2PTC complexes. 

10 

the ligand for each one if these 28 ligand positions. Spheres in 
lighter shades of gray correspond to lower energy conforma
tions. The position of the native ligand is shown as a dotted 
sphere and pointed by an arrow. After performing the first it
eration of SOU we sample a new set of ligand positions using 
the procedure in SOU's Step 5 (b) (cf. Fig. 3). The centers of 
these ligands are depicted in the right figure. The corresponding 
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Fig. 7. Illustration of the 1BRS docking procedure.

structures are both very close to the native one and have low
energies.

We conclude by noting that the starting point for our medium-
range optimization is the cluster of best conformations produced
by the techniques in [10]. As seen in Fig. 6, these produce con-
formations within 3–5 Å from the native one. Our method is able
to reduce this distance to less than 1Å in all three complexes
considered. In most cases this is considered a very successful
identification of the native conformation as the (approximate)
energy models used do not provide a much greater degree of
accuracy.

VIII. CONCLUSION

We introduced a new method for minimizing free-energy
functions appearing in molecular docking and other important
problems in computational structural biology. These energy
functions are notoriously hard to minimize as they consist of
terms acting in disparate space-scales and have a huge number
of local minima. Yet, in certain areas they exhibit a funnel-like
shape which we use to our advantage.

Our method works on the surface spanned by local minima.
We developed a technique based on semidefinite programming
to form a general convex underestimator of the energy function.
The underestimator guides random, yet biased, exploration of
the energy landscape. We established, theoretically as well as
numerically, that our method performs better than an alternative
(CGU) method. Finally, we applied our algorithm to some
protein-protein docking problems and showed that the resulting
conformation is extremely close to the native one (within 1Å
RMSD). This improves upon the 3–5Å RMSD that current
state-of-the-art methods produce.
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